
EE 271 - Project Report
Hardware Improvements for Rasterizer Design

Krishna Teja Malladi (0558 2221)
Piyush Keshri (0559 4497)

Stanford University, Department of Electrical Engineering

November 29, 2009

1 Problem Statement

The goal of the project is to get a render speed of 500 Million µPolys/sec while consuming
as little power and area as possible. The baseline rasterizer provided runs with a clock
period of 1.05 ns and has a throughput of 0.083 µPolys/cycle(or 79 Million µPolys/sec).

2 Approach

The figure of merit we choose in the project to evaluate various options which satisfy
the required throughput, is FOM = Throughput

Power
. This figure of merit has been chosen, as

it is independent of clock frequency. Our design methodology is to maximize FOM and
to resolve the critical paths after the synthesis, to sacrifice more power (within power
budget) if we want higher throughput by choosing higher frequency, f .

Of the suggested approaches, simple duplication of rasterizer for parallelization of microp-
olygon processing is the fundamental and easiest way to achieve the required throughput.
However, it has the issues of extra overheads because of area and power. As the required
throughput is 500 Million µPolys/sec, we would like to make the throughput of each
parallel stage close to an integer fraction of 500. (i.e. either 500 or 250 or 166.67 so on).
So, our approach is to choose design improvements so as to,

Optimize, T (design, f) = 500
N

subject to constraints of minimum area & power.

where, T= throughput per stage & N = no. of parallel stages.

In our design, we try to implement the design improvements in sequential manner to
achieve T close to one of the integer fractions suggested above without altering the clock
frequency. If we realize that we cannot reach the next fraction, we try to squash a few of

1

the improvements till we reach the current fraction of 500 so as to save power and area.
This will maximize the figure of merit. Then, by resolving the most critical paths, we
can further increase throughput by increasing f .

3 Improvements

We ran 200,000 test vectors on the baseline design and the base design results obtained
are as follows: 2189483 clock cycles at t=1.05 ns. This is equivalent to 0.083 µpoly/cycle
or 79 million µpoly/sec.

Cycles: 2189483 uPoly: 200001 sampleTests: 1989480 sampleHits: 252364

3.1 Backface Culling

The idea of backface culling is to recognize the directionality of the polygon vectors early
in the design and disallow counter-clockwise vectored- polys as we know apriory that such
polys will not be rendered anyway, since they point away from the display. Currently,
they are eliminated in ’sampletest’ i.e. at a deeper stage within the pipeline with halt
for all the invalid sample points resulting in higher no. of clock cycles and lower sample
hit to miss ratio.

3.1.1 Triangles

For triangle backface culling, we get the normal vector direction by taking cross product
of any two vector edges of the triangle and make such triangles invalid which are back-
facing (resulting normal out of screen). The Improvement results are as follows:

Cycles: 1764706 uPoly: 200001 sampleTests: 1564694 sampleHits: 252364

3.1.2 Quadrilaterals

The next logical idea is to extend the idea of backface culling to simple quadrilaterals
(rhombus like) by using the auxilliary vector (diagonal like) and calculating four normal
vectors to determine the directionality before backface culling. Since, the idea of backface
culling to quadrilaterals result in overall improvement by around 15% further, the design
is extended to take into account the backface culling for the complex quadrilaterals as
well, taking into account the various possible directionality combinations. The improve-
ment results are as follows:

Cycles: 1358541 uPoly: 200001 sampleTests: 1158529 sampleHits: 252362.

Next, we implemented backface culling for ’bow-tie cases’ to make the design robust.
The improved results obtained are as follows:

2

Cycles: 1358541 uPoly: 200001 sampleTests: 1158529 sampleHits: 252362

Remark: There is no cycle change for ’bow-tie’ cases as either they have been re-
moved considering backfacing complex quadrilaterals or are not present. Also, the dis-
crepancy resulted in the number of sample hits (2 misses from baseline) obtained by the
improved design has been investigated. The test case for the invalid result is:

1 4 fffe0c fffd15 000895 0000fc 00043c 000116 00056f 0003ec

The invalid sample has been incorrectly studied by the baseline design. Sampletest
script is not able to eliminate the invalid test case (backfacing complex quadrilateral)
and considers it as a ’bow-tie’ case(since, the condition for ’bow-tie’ is not exhaustive).

3.2 Bubble Smashing

Currently, we notice that it is possible for NOPs to appear in the pipeline when a poly is
backface culled as it takes atleast one cycle of work to determine the facing. However, if
we could advance a waiting polygon, we can save on the cycle. So we modified the design
such that we read 2 polys in a given cycle (Though we currently read in the driver,
it is fair to assume that in real-life the polys could be coming from a memory location
and we can always extend the memory block-size to 2 from 1). Now, if we see that one
of the fetched polys is invalid (either due to backface or invalid to begin with) we ad-
vance the other. If we see both are valid, we squash the program counter to serialize the
polys and send one by one. By doing this, we have eliminated the cycle delay bubble that
could have been due to the backface culling. The improved results obtained are as follows:

Cycles: 1315978 uPoly: 200001 sampleTests: 1158529 sampleHits: 252362

3.3 Idle FSM

We noted from the timing diagrams that there is an idle cycle in the FSM of the
test iterator. This arises because the evaluation of the signal validsamp R13S waits for
current state to go to TEST stage while it could have right away made validsamp R13S
HIGH and passed a valid sample test. So we implemented this change and also modified
the FSM to pass on of ll x+MSAA (next right sample) or ll y+MSAA (next up sample)
in this cycle as ll x is tested in the last cycle anyway.
Remark: Note that this mux to choose between ll x or ll y is because there could be
cases where all sample points are on a vertical line.

Cycles: 1175706 uPoly: 200001 sampleTests: 1133845 sampleHits: 252362

3

3.4 Better Bounding box

[1] suggests a new method of traversing over the bounding-box : the increments are
not along X or Y axis but along the edges of the polygon to reduce the hit to miss
ratio. However the paper is addressed for bigger polygons before the concept of small
micropolygons has been proposed for which the improvements would be not as much as
desired. [2] mentions in Chapter 3 that the best method to reduce the hit to miss ratio
for µpoly is obtained by merging triangles to quadrilaterals when possible, as for almost
the same amount of traversal of bounding box, we can cover the sample points of both
triangles. So, instead of method in [2], we implemented triangle merging as described in
the next section.

3.5 Triangle Merging

The motive behind triangle merging to form a quadrilateral is that the bounding box
is a tighter bound on the quadrilateral than on the triangle, which results in higher
sample hits to misses ratio. This higher ratio is desirable as it increases the pipeline’s
micropolygon throughput. During triangle rasterization, we first backface cull the 2
fetched micropolygons and we observe if both micropolygons are valid triangles (after
back culling) and share a common edge (the directionality of the common edge has
to be opposite in the two triangles, otherwise we will obtain a five-sided polygon), we
merge them to form a quadrilateral and pass the merged quadrilateral micropolygon to
the pipeline stages.

Cycles: 1008565 uPoly: 200001 sampleTests: 966659 sampleHits: 252362

3.6 BBox

The idea is to round off lower bound of the bounding box to the upper right sample to
reduce the number of sample tests. We tried ceiling the lower bound instead of floor and
while we did observe a marginal performance benefit, it resulted in few sample misses.
We think that this could be a problem with the sample counter as we were able to
match the sample hit points to baseline. Added to that, this modification needed the
modification of the logic of at right edg and at top edg from = (simple XOR) to > (24
bit comparator) which could be expensive in hardware. Due to the above reasons, the
decision is that this could be the first improvement that will be dropped if we realize we
cannot go to the next fraction of 500 Million µPolys/sec.

3.7 Multi test

We did not implement ’Multi samples test’ improvement design as the verification col-
lateral change and power penalty could be high. The other issue is that since, the
micropolygons are very small in size, the number of samples per micropolygon are nearly
around 12 samples/poly and investing much on hardware without large improvements
and adding more overhead to control flow of sample points fetching is not worthy enough

4

and hence not implemented. Neverthless, the hardware can be easily duplicated if re-
quired for multiple tests per cycle.

3.8 Duplication/Parallelism

By using all possible improvements, we were able to make T=197 million µPolys/cycle.
So, the no. of duplication units needed is 500

197
= 2.53. which could have been made 2 if

we make a few more optimizations like pipelining. However, we note that the margin to
attain 500 Million µPolys/sec would have been small in that case as a very nasty test
vector with no triangle merges, no backfaces can be possible in a real life situation. So,
we dropped the Bbox ceiling idea to reduce T and P. Now, the hardware will have to be
3-way parallelized.

3.9 Cycle time reduction

The throughput per stage, T by making the discussed optimizations is about 197 mil-
lion µPolys/cycle and FOM= 12.628 millionµpolys/sec-mW. We noted that the current
critical path is from the 14 bit sample multiplication from sampletest. So, we reused
the booth algorithm we designed for Assignment 2 to reduce the critical path and make
the design synthesizable at t=0.72ns. This would give a final overall throughput of 275
Million µPolys/sec per stage with (P, A) = (10.7 mW, 0.017736 mm2) . So, now
need only 2 duplication parallel units which give a total Throughput of 550 Million
µPolys/sec and (P, A)= (21.4 mW and 0.035472 mm2).

4 Verification and Synthesis

We ran the 200,000 test vector on the modified design and observed the following results:

Cycles: 1008565 uPoly: 200001 sampleTests: 966659 sampleHits: 252362

The 2 samplehit misses are the bad sample hits which we caught (discussed in Section
3.1.2) and the no. of cycles has reduced from 2189483 to 1008565 showing an improve-
ment of about 54%. We then synthesized the design in Synopsys by reducing the cycle
time to 0.75ns and obtained no timing violations.

5 Results and Analysis

Though the approach we discussed above, we were able to obtain a throughput of 550
Million µPolys/sec. Note that we squashed the ceiling optimization to save power. By
choosing 2 multiple instances of rast, the final power and area can be computed as
Toverall=550 Million µPolys/sec, P= 21.4 mW and A= 0.035472 mm2

Hence, our design meets the throughput requirements, has an optimized FOM value
and also has power and area dissipation within the specified budget of 300mW and 1mm2

respectively.

5

The throughput improvements are tabulated below. Note that the improvements are
incremental, i.e. each subsequent modification includes all previous improvements too.

Table 1: Throughput Improvements with optimizations
Improvement No.of cycles Clk period Throughput Cycle Impr

(ns) (Mils of µpoly/s) % over base
Baseline design 2,189,483 1.05 79 0
Triangle Backface Cull 1,764,706 1.05 108 19.4
Complex/Simple Quad 1,358,541 1.05 140 37.95
Backface Cull
Bow-tie Quad- Backface Cull 1,358,541 1.05 140 37.95
Bubble Smashing 1,315,978 1.05 145 39.89
Idle FSM 1,175,706 1.05 162 46.30
Triangle Merging 1,008,565 1.05 189 53.93
Clock period reduction 1,008,565 0.72 275 53.93
Hardware Duplication 1,008,565 0.72 550 53.93

6 Future Work

There are three more optimizations we have thought and tried to implement but faced
difficulty due to some issues:

6.1 Dynamic µpoly Fetch

In this optimization, we have modified the rast-driver to first fetch a µpoly and then
dynamically keep fetching next µpoly until we get a frontface µpoly. By this, we will
never even fetch an invalid µpoly into the second word and we have seen a throughput
improvement to 574 Million µPolys/sec as shown below:

Cycles: 968233 uPoly: 83356 sampleTests: 967575 sampleHits: 252362

However, the issue is that this dynamic process might present a critical path as the
next frontface could be far apart. To eliminate this, we have put a limit of 100 in the
above experiment. So, in future if we have control on the up-stream of rasterizer, we can
surely induct this idea for better throughput.

6.2 Sample Test Reduction

The idea which we implemented is that in bounding box traversal, whenever we notice
that the current sample is a miss and the previous sample is a hit, we no longer need
to move to next rt sample (only in case of Triangles/ simple Quads). Instead we can

6

go to next up sample. Unfortunately, we did not see any improvement by implementing
this as the µpolys are very small and this condition could occur with a low probablity.
Improvements:

Cycles: 1008565 uPoly: 200001 sampleTests: 966659 sampleHits: 252362.

6.3 Dynamic µpoly Fetch using Probability

If we have a dynamic probability distribution table of backface µpolys, we can fetch
dynamically from the sampletests (instead of contiguous fetches: as the chance of back-
facing among consecutive µpolys has a high correlation). This sure will have some sample
misses but on rendering on a big screen, it might not effect the accuracy.

References

[1] J. Pineda, “A parallel algorithm for polygon rasterization,” Computer Graphics, 1988.

[2] E. Luong, “Data parallel rasterization of micropolygons,” Ph.D. dissertation, Stanford
University, 2009.

7

